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Motivation

1 Algorithmic randomness has been intensively studied for
computable and non-computable measures.

2 Algorithmic randomness is closely related to computability
theory; most of the work is on the interaction between both
fields.

3 For a computability theoretic reason that we will discuss, there is
a class of objects similar to measures that is relevant for
algorithmic randomness, namely left-c.e. semi-measures.

4 We will try to understand randomness w.r.t. to these objects.
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A little history
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Martin-Löf randomness
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1 Martin-Löf randomness. Real is not random if in the
intersection of a sequence of uniformly Σ0

1 classes, whose
measure tends to 0 at a guaranteed minimum speed.

2 Classically, the Lebesgue measure is used here.
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Martin-Löf randomness for computable measures

1 Definition. A probability measure µ on 2∞ is computable if
σ 7→µ(¹σº) is computable as a real-valued function.

2 Definition. A µ-Martin-Löf test is a sequence (Un)n of
uniformly Σ0

1 classes such that for all n, µ(Un)≤ 2−n.
3 Definition. X ∈ 2∞ is called µ-Martin-Löf random if for any
µ-ML-test (Un)n we have X 6∈

⋂

n(Un).
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Reminder: Turing functionals

1 Intuition. A Turing functional effectively converts one infinite
binary sequence into another.

2 Definition. A Turing functional Φ : 2∞→ 2∞ is a (partial)
function for which there exists a Turing machine M such that

σ ,σ ′ ∈ dom(M) ∧ σ v σ ′ =⇒ M(σ)vM(σ ′)

For A where M(A � n) halts for all n and |M(A � n)| →∞, we
define Φ(A) = lim

n→∞
M(A � n). Otherwise Φ(A) is undefined.

3 Definition. Φ is almost total if λ(dom(Φ)) = 1.



http://db.tt/rYT4EcJQ 7/26

Induced measures

1 Let Φ be an almost total Turing functional.
2 Definition. The measure induced by Φ is

λΦ(σ) = λ(Φ
−1(σ)) = λ{X | σ À ΦX}.

3 Careful! If Φ is not almost total, this need not be a measure.
4 Proposition. Every computable probability measure is induced

by an almost total Turing functional.
5 Theorem. Φ almost total and X ∈MLR implies Φ(X) ∈MLRλΦ.
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Randomness for non-computable measures

1 Reimann/Slaman studied random for non-computable measures.
2 There are two different ways of using the non-computability.
3 Of course we always evaluate the measure condition w.r.t. the

non-computable measure.
4 But we have a choice of whether the procedure enumerating the

test has access to the non-computable measure or not.
5 In the first case, we need to represent the measure somehow as an

element of 2∞, so that the procedure can access it as oracle.
6 This representation will not be unique.

(as representations of real-valued functions typically are)

7 We will usually be interested in representations as easy as
possible w.r.t. Turing reducibility.
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Randomness for non-computable measures

1 Let µ be non-computable, and Rµ be a representation of µ.
An Rµ-Martin-Löf test is a sequence (Ui)i∈ω of uniformly Σ0

1(Rµ)
classes with µ(Ui)≤ 2−i for all i.
X is µ-Martin-Löf random, denoted X ∈MLRµ, if there exists
some Rµ for µ such that X passes all Rµ-ML-tests.

2 Intuition. µ is so “weak” that it can be represented in ways that
are computationally too weak to derandomize X.
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Blind randomness

1 Some measures are complex enough that all of their
representations have significant derandomization power.

2 This interferes with randomness.
3 To deal with this, consider blind randomness, first studied by

Kjos-Hanssen.

A blind µ-Martin-Löf test is a sequence (Ui)i∈ω of uniformly Σ0
1

classes with µ(Ui)≤ 2−i for all i.
X is blind µ-Martin-Löf random, denoted X ∈ bMLRµ, if X passes
every blind µ-ML-test.
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Left-c.e. semimeasures
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Left-c.e. semimeasures

1 A semi-measure is not guaranteed to be additive, but only to be
“superadditive”.

2 That is, we only have ρ(σ)≥ ρ(σ0)+ρ(σ1).
(We also allow ρ(∅)≤ 1.)

3 ρ is called left-c.e. if we can uniformly in the input σ
approximate ρ(σ) from below.
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Induced semi-measures

1 We can again look at induced measures, with the same definition:

λΦ(σ) = λ(Φ
−1(σ)) = λ{X | σ À ΦX}.

2 This time we don’t require almost totality; measure loss
corresponds to paths where the functional is not defined.

3 Proposition (Levin/Zvonkin). Every left-c.e. semi-measure is
induced by a Turing functional.

4 So left-c.e. semi-measures directly correspond to Turing
functionals, and are therefore natural objects to consider.

5 There is a universal left-c.e. semimeasure, denoted by M.
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Randomness for semi-measures: the straight-forward way

1 Naïve definition: Plug in semi-measure instead of measure.
2 This notion behaves strangely.
3 Proposition (BHPS). There is a left-c.e. semi-measure ρ such

that for any sequence (Ui)i∈ω of uniform Σ0
1 classes we have that

(∀i : ρ(Ui)≤ 2−i) =⇒
⋂

i∈N
Ui = ;.

4 In other words, all valid tests are empty.
5 There are no non-randoms.
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What we aim for



http://db.tt/rYT4EcJQ 16/26

Some (debatable) desiderata

1 Coherence: If X is random with respect to µ as measure, we also
want X to be random with respect to µ seen as a semi-measure.

2 Randomness preservation: If X ∈MLR and Φ is a Turing
functional, then Φ(X) is random with respect to λΦ.

3 No randomness from nothing: If Y is random with respect to
the semi-measure λΦ for some Turing functional Φ, then there is
some X ∈MLR such that Φ(X) = Y .
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Making a measure out of a semi-measure
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Repairing a semi-measure

1 One idea is to apply randomness definitions for measures to
semi-measures.

2 For this we must change the semi-measure into a measure.
3 What differentiates a measure from a semi-measure is that the

latter loses measure along the way down a path.
4 To fix this, decrease the measure of each parent to the sum of the

measures of its two children.
5 This is the so-called “bar approach” by V’yugin.
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Cutting back a semi-measure

1 V’yugin defined ρ(σ) := inf
n

∑

τ�σ & |τ|=n

ρ(τ).

2 This is the largest measure such that ρ≤ ρ.
3 For Φ inducing ρ we have ρ(σ) = λ({X : Φ(X)↓& ΦX � σ}).
4 Can we use ρ to define randomness for ρ?



http://db.tt/rYT4EcJQ 20/26

ρ can be complicated

1 Theorem (BHPS). The following are equivalent for α ∈ (0,1).
α is ;′-right c.e..
There is a semi-measure ρ such that ρ= α ·λ.

2 In other words, we can make a left-c.e. semi-measure ρ such that
(every representation of) ρ codes ;′′.

3 Proposition (BHPS). There is a positive ;′-computable measure
µ with a low representation such that µ 6= α ·ρ for every left-c.e.
real α and every left-c.e. semi-measure ρ.

4 Open question. Can we achieve computably dominated?



http://db.tt/rYT4EcJQ 21/26

Blind bar randomness

1 The derandomization power of ;′′ interferes with randomness.
2 So if we want to define randomness using the bar approach, we

should look at the blind version, denoted by bMLRρ.
3 Proposition (BHPS). There is a semi-measure ρ such that

ρ= λΦ for some Turing functional Φ;
dom(Φ)∩MLR 6= ;; and
bMLRρ = ;.

4 In other words, we have no randomness preservation.
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W2R and semi-measures
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Weak 2-randomness w.r.t. a semimeasure

1 Definition. For a left-c.e. semi-measure ρ, a generalized ρ-test is
a sequence (Ui)i∈ω of uniformly Σ0

1 classes with lim
i→∞

ρ(Ui) = 0.

2 So this is the naïve notion of weak 2-randomness w.r.t. a
semi-measure.

3 But it behaves well:

Theorem (BHPS). X passes every generalized ρ-test iff
X ∈ bW2Rρ.

4 And we have preservation of randomness!

Theorem (BHPS). If X ∈W2R∩ dom(Φ), then Φ(X) ∈ bW2Rρ.

5 “No randomness from nothing” holds for truth-table
functionals, but is open in general.
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Conclusion
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Intimidating diagram

2MLRρ ( W2Rρ ( ARρ ( MLRρ

⊆ = ( (

b2MLRρ ( bW2Rρ ( bARρ ⊆ bMLRρ( ( ( (

2MLRρ ( W2Rρ ( ARρ = MLRρ
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Open questions

1 Question. If Φ and Ψ are Turing functionals such that
λΦ(σ) = λΨ(σ) for every σ ∈ 2<∞, does it follow that
Φ(W2R) = Ψ(W2R)?

We know this is wrong for MLR, but holds for 2-random.
It also holds for W2R for truth-table functionals.

2 Question. If ρ is a left-c.e. semi-measure, does ρ have a least
Turing degree representation?

3 Question. Does M have a least Turing degree representation?

Thanks for your attention.
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