Randomness for semi-measures

Rupert Hölzl

Universität der Bundeswehr, München

Joint work with Laurent Bienvenu, Christopher Porter and Paul Shafer

These slides (now!) at http://db.tt/rYT4EcJQ

Motivation

- Algorithmic randomness has been intensively studied for computable and non-computable measures.
- 2 Algorithmic randomness is closely related to computability theory; most of the work is on the interaction between both fields.
- For a computability theoretic reason that we will discuss, there is a class of objects similar to measures that is relevant for algorithmic randomness, namely left-c.e. semi-measures.
- 4 We will try to understand randomness w.r.t. to these objects.

A little history

Martin-Löf randomness

- Martin-Löf randomness. Real is not random if in the intersection of a sequence of uniformly Σ_1^0 classes, whose measure tends to 0 at a guaranteed minimum speed.
- 2 Classically, the Lebesgue measure is used here.

Martin-Löf randomness for computable measures

- **Definition.** A probability measure μ on 2^{∞} is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is computable as a real-valued function.
- **2 Definition.** A μ -Martin-Löf test is a sequence $(\mathcal{U}_n)_n$ of uniformly Σ_1^0 classes such that for all n, $\mu(\mathcal{U}_n) \leq 2^{-n}$.
- **3 Definition.** $X \in 2^{\infty}$ is called μ -Martin-Löf random if for any μ -ML-test $(\mathcal{U}_n)_n$ we have $X \notin \bigcap_n (\mathcal{U}_n)$.

Reminder: Turing functionals

- **Intuition.** A *Turing functional* effectively converts one infinite binary sequence into another.
- **2 Definition.** A *Turing functional* $\Phi: 2^{\infty} \to 2^{\infty}$ is a (partial) function for which there exists a Turing machine M such that

$$\sigma, \sigma' \in \mathsf{dom}(M) \ \land \ \sigma \sqsubseteq \sigma' \implies M(\sigma) \sqsubseteq M(\sigma')$$

For *A* where $M(A \upharpoonright n)$ halts for all *n* and $|M(A \upharpoonright n)| \to \infty$, we define $\Phi(A) = \lim_{n \to \infty} M(A \upharpoonright n)$. Otherwise $\Phi(A)$ is undefined.

3 Definition. Φ is almost total if $\lambda(\text{dom}(\Phi)) = 1$.

Induced measures

- **1** Let Φ be an almost total Turing functional.
- **2 Definition.** The measure induced by Φ is

$$\lambda_{\Phi}(\sigma) = \lambda(\Phi^{-1}(\sigma)) = \lambda\{X \mid \sigma \sqsubset \Phi^X\}.$$

- **3** Careful! If Φ is *not* almost total, this need not be a measure.
- 4 Proposition. Every computable probability measure is induced by an almost total Turing functional.
- **5 Theorem.** Φ almost total and $X \in \mathsf{MLR}$ implies $\Phi(X) \in \mathsf{MLR}_{\lambda_{\Phi}}$.

Randomness for non-computable measures

- Reimann/Slaman studied random for non-computable measures.
- 2 There are two different ways of using the non-computability.
- 3 Of course we always evaluate the measure condition w.r.t. the non-computable measure.
- 4 But we have a choice of whether the procedure enumerating the test has access to the non-computable measure or not.
- 5 In the first case, we need to represent the measure somehow as an element of 2^{∞} , so that the procedure can access it as oracle.
- 6 This representation will not be unique.
 (as representations of real-valued functions typically are)
- We will usually be interested in representations as easy as possible w.r.t. Turing reducibility.

Randomness for non-computable measures

- **1** Let μ be non-computable, and R_{μ} be a representation of μ .
 - An R_{μ} -Martin-Löf test is a sequence $(\mathcal{U}_i)_{i \in \omega}$ of uniformly $\Sigma_1^0(R_{\mu})$ classes with $\mu(\mathcal{U}_i) \leq 2^{-i}$ for all i.
 - X is μ -Martin-Löf random, denoted $X \in \mathsf{MLR}_{\mu}$, if there exists some R_{μ} for μ such that X passes all R_{μ} -ML-tests.
- **2 Intuition.** μ is so "weak" that it can be represented in ways that are computationally too weak to derandomize X.

Blind randomness

- Some measures are complex enough that *all* of their representations have significant derandomization power.
- 2 This interferes with randomness.
- 3 To deal with this, consider *blind* randomness, first studied by Kjos-Hanssen.
 - A blind μ -Martin-Löf test is a sequence $(\mathcal{U}_i)_{i \in \omega}$ of uniformly Σ_1^0 classes with $\mu(\mathcal{U}_i) \leq 2^{-i}$ for all i.
 - X is blind μ -Martin-Löf random, denoted $X \in \mathsf{bMLR}_{\mu}$, if X passes every blind μ -ML-test.

Left-c.e. semimeasures

Left-c.e. semimeasures

- A semi-measure is not guaranteed to be additive, but only to be "superadditive".
- That is, we only have $\rho(\sigma) \ge \rho(\sigma 0) + \rho(\sigma 1)$. (We also allow $\rho(\emptyset) \le 1$.)
- ρ is called left-c.e. if we can uniformly in the input σ approximate $\rho(\sigma)$ from below.

Induced semi-measures

■ We can again look at induced measures, with the same definition:

$$\lambda_{\Phi}(\sigma) = \lambda(\Phi^{-1}(\sigma)) = \lambda\{X \mid \sigma \sqsubset \Phi^X\}.$$

- This time we don't require almost totality; measure loss corresponds to paths where the functional is not defined.
- **Proposition (Levin/Zvonkin).** Every left-c.e. semi-measure is induced by a Turing functional.
- 4 So left-c.e. semi-measures directly correspond to Turing functionals, and are therefore natural objects to consider.
- \blacksquare There is a universal left-c.e. semimeasure, denoted by M.

Randomness for semi-measures: the straight-forward way

- Naïve definition: Plug in semi-measure instead of measure.
- 2 This notion behaves strangely.
- **3** Proposition (BHPS). There is a left-c.e. semi-measure ρ such that for any sequence $(\mathcal{U}_i)_{i\in\omega}$ of uniform Σ_1^0 classes we have that

$$(\forall i : \rho(\mathcal{U}_i) \le 2^{-i}) \Longrightarrow \bigcap_{i \in \mathbb{N}} \mathcal{U}_i = \emptyset.$$

- 4 In other words, all valid tests are empty.
- 5 There are no non-randoms.

What we aim for

Some (debatable) desiderata

- **Coherence:** If X is random with respect to μ as measure, we also want X to be random with respect to μ seen as a semi-measure.
- **2** Randomness preservation: If $X \in MLR$ and Φ is a Turing functional, then $\Phi(X)$ is random with respect to λ_{Φ} .
- **3** No randomness from nothing: If Y is random with respect to the semi-measure λ_{Φ} for some Turing functional Φ , then there is some $X \in \mathsf{MLR}$ such that $\Phi(X) = Y$.

Repairing a semi-measure

- One idea is to apply randomness definitions for measures to semi-measures.
- 2 For this we must change the semi-measure into a measure.
- What differentiates a measure from a semi-measure is that the latter loses measure along the way down a path.
- 1 To fix this, decrease the measure of each parent to the sum of the measures of its two children.
- 5 This is the so-called "bar approach" by V'yugin.

Cutting back a semi-measure

- $\textbf{1} \ \text{V'yugin defined} \ \overline{\rho}(\sigma) := \inf_n \sum_{\tau \succeq \sigma} \sum_{\& \ |\tau| = n} \rho(\tau).$
- 2 This is the largest measure such that $\overline{\rho} \leq \rho$.
- **5** For Φ inducing ρ we have $\overline{\rho}(\sigma) = \lambda(\{X : \Phi(X) \downarrow \& \Phi^X \succ \sigma\})$.
- **4** Can we use $\overline{\rho}$ to define randomness for ρ ?

$\overline{\rho}$ can be complicated

- **1 Theorem (BHPS).** The following are equivalent for $\alpha \in (0, 1)$.
 - \blacksquare α is \emptyset' -right c.e..
 - There is a semi-measure ρ such that $\overline{\rho} = \alpha \cdot \lambda$.
- **2** In other words, we can make a left-c.e. semi-measure ρ such that (every representation of) $\overline{\rho}$ codes \emptyset ."
- **3 Proposition (BHPS).** There is a positive \emptyset' -computable measure μ with a low representation such that $\mu \neq \alpha \cdot \overline{\rho}$ for every left-c.e. real α and every left-c.e. semi-measure ρ .
- **Open question.** Can we achieve computably dominated?

Blind bar randomness

- **1** The derandomization power of \emptyset'' interferes with randomness.
- 2 So if we want to define randomness using the bar approach, we should look at the blind version, denoted by $bMLR_{\overline{\rho}}$.
- **11 Proposition (BHPS).** There is a semi-measure ρ such that
 - $\rho = \lambda_{\Phi}$ for some Turing functional Φ ;
 - $dom(\Phi) \cap MLR \neq \emptyset$; and
 - bMLR_{$\overline{\rho}$} = \emptyset .
- 4 In other words, we have no randomness preservation.

W2R and semi-measures

Weak 2-randomness w.r.t. a semimeasure

- **Definition.** For a left-c.e. semi-measure ρ , a generalized ρ -test is a sequence $(\mathcal{U}_i)_{i \in \omega}$ of uniformly Σ_1^0 classes with $\lim_{i \to \infty} \rho(\mathcal{U}_i) = 0$.
- 2 So this is the naïve notion of weak 2-randomness w.r.t. a semi-measure.
- 3 But it behaves well:
 - Theorem (BHPS). X passes every generalized ρ -test iff $X \in bW2R_{\overline{\rho}}$.
- 4 And we have preservation of randomness!
 - Theorem (BHPS). If $X \in W2R \cap dom(\Phi)$, then $\Phi(X) \in bW2R_{\overline{\rho}}$.
- 5 "No randomness from nothing" holds for truth-table functionals, but is open in general.

Conclusion

Intimidating diagram

Open questions

- **Question.** If Φ and Ψ are Turing functionals such that $\lambda_{\Phi}(\sigma) = \lambda_{\Psi}(\sigma)$ for every $\sigma \in 2^{<\infty}$, does it follow that $\Phi(W2R) = \Psi(W2R)$?
 - We know this is wrong for MLR, but holds for 2-random.
 - It also holds for W2R for truth-table functionals.
- **Question.** If ρ is a left-c.e. semi-measure, does $\overline{\rho}$ have a least Turing degree representation?
- **3** Question. Does \overline{M} have a least Turing degree representation?

Open questions

- **Question.** If Φ and Ψ are Turing functionals such that $\lambda_{\Phi}(\sigma) = \lambda_{\Psi}(\sigma)$ for every $\sigma \in 2^{<\infty}$, does it follow that $\Phi(W2R) = \Psi(W2R)$?
 - We know this is wrong for MLR, but holds for 2-random.
 - It also holds for W2R for truth-table functionals.
- **Question.** If ρ is a left-c.e. semi-measure, does $\overline{\rho}$ have a least Turing degree representation?
- **3** Question. Does \overline{M} have a least Turing degree representation?

Thanks for your attention.